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Analyticity Properties and a Convergent Expansion
for the Inverse Correlation Length of the
Low-Temperature d-Dimensional Ising Model

Michael O’Carroll' and Wilson Dantas Barbosa®
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We show that the inverse correlation length m(z) of the truncated spin—spin
correlation function of the Z¢ Ising model with + or — boundary conditions
admits the representation m(z) = —(4d — dlnz(1 — §;)) + r(z) for small z =
e~ P ie., large inverse temperatures 8 > 0. r(z) = 3% b,z" is a d-dependent
analytic function at z = 0, already known in closed form for d = 1 and 2; for
d =3 b, can be computed explicitly from a finite number of the Z¢ limits of
z = 0 Taylor series coefficients of the finite lattice correlation function at a finite
number of points of Z¥.
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In this short note analytic properties and a convergent expansion are
obtained for the inverse correlation length of the truncated spin—spin
correlation function (cf) of the nearest-neighbor spin *1 Z¢ Ising model
with * boundary conditions for large inverse temperature 8. Our results
are analogous to those obtained in Ref. 1 for the high-temperature Ising
model and follow easily upon combining the techniques of Ref. 1 and the
results of Ref. 2. For d = 1 and 2 our results are well known from explicit
formulas (see Ref. 3) and so will not be discussed further.

We denote by G(x; y,2) = (55,05 — {5, 02${5,74, X, y EA the trun-
cated spin—spin cf for the finite lattice A C Z¢ with *=boundary conditions
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and complex activity z where for F(s) = [[;c45, 4 C A, we define

(Fon=5= S F(s) T 27
A {s) (Y CA
{i, j> denote the unordered nearest neighbor pairs of A and the sum is over
all spin configurations [— 1, 1]* with the restriction that the boundary spins
are +1. Z, is a normalization factor such that (1), =1.z=e"#, 8 >0,
corresponds to the physical model. A similar definition holds for —
boundary conditions but for definiteness we consider plus conditions
throughout.
We let G(x; y,z) denote the Z¢ lattice cf defined by

G(x: y.2) = lim Gy(x: .2)

By Ref. 2 G(x; y,z) exists, is translation invariant and analytic in z for |z|
small. By translation invariance we can write G(x; y,z) = G(x — y,z). We
let x = (x, ..., x;) = (x,x) denote points of Z7, |x| = 9_ |x| = |x,| +
x|, and let G(p,z) = 3 ,e?*G(x, z) denote the Fourier transform of G(x,z)
where p = (p,,p), p, €E(— 7, 7] and px =9 px,. In Ref. 2 a lattice
quantum field theory is associated with the Ising model correlation func-
tions and, for d 2 3, z > 0 and small, it is shown that there is an isolated
dispersion curve w(p), real analytic in p € (— 7,7}, w(p) Z w(0) = m(z)
where m(z), the inverse correlation length (= mass of the fundamental
particle of the associated quantum field theory), is defined by
m(z)= lim il SN G(x = (x,,0), 2)

X0 Xy

w(p) is defined by

— 1 - 1 px
w(p) = Jim < T G(x)|
Furthermore the mass and dispersion curve satisfy lim, [m(z)/— (4d —
MHnz] =1, lim, Je(p)/m] =1, uniformly in pE (-, 7", In Ref. 5
expansions for m(z) are obtained.

We state our results as Theorems 1 and 2.

Theorem 1. (a) There exists a function r(z), analytic at z =0,
#(0) = 0, such that for all z = e~# > 0 and small m(z) admits the represen-
tation m(z) = —(4d — Hlnz + r(z).

(b) There exists a z’ > 0 such that for each z € (0,z") m(2) is analytic.

Remark. z' may be larger than the radius of convergence of the
z = 0 Taylor series of r(z).

Theorem 2. b, = (1/n1)(d"r/dz") (z = 0), the nth Taylor series coef-
ficient of r(z) can be computed from a finite number of the Z¢ limits of the
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z = 0 Taylor series coefficients of the finite lattice cf G ,(0; x,z) for a finite
number of x, |x| < R(n), where R(n) increases with n.

Similar results hold for the dispersion curve w(p). The proofs of
Theorems 1 and 2 will be given after some preliminary lemmas.

The results of Ref. 2 as well as ours follow from z analyticity and
x-decay properties of G(x,z) and I'(x,z), where I'(x,2) =I'(y;u,z), x =
y — u, is the convolution inverse of G(x; y,z) interpreted as a matrix
operator on 1,(Z9), ie., T(x; y,2)= G~ (x; y,2), 3.T(x;u,2)G(u; y,z)
= 8Xy. Specifically T'(x, z) has faster x; falloff than G(x,z). We state the
results of Ref. 2 in the form needed here as Lemmas 1 and 2. We often
drop the z argument for notational simplicity. We let || || denote the /,(Z¢)
operator norm and |X|, = sup,« ;< 4| x;|- In what follows all results are to be
understood as holding for 4 Z 3 and all sufficiently small |z| unless stated
otherwise; ¢,¢’,c,, . . . will denote strictly positive constants.

Lemma 1. (a) There exist c,c,,c, such that G(x,z) is analytic in z,

[G(x,2)| S eyfe, Dbl

|Gl < ey, and G(xy,X,2) = G(—x,X,2).
(b) G(p,z) is jointly analytic in z and p,, |Im p;| < —4(d — l)lnlcz]

Lemma 2. (a) Let P:1(Z9) > (Z) be the operator with matrix
elements P(x »2) = G(x,2)8,,, then P is analytic, | P(x,z)| = |z|* and for
|z| >0 P! exists, is analytic and 1P| = |z]~%.

(b) Let Q= P~'(G — P) then there exist c, ¢, such that Q is analytic,

| (%, 2)| = ¢y ez[H47 DRI El(1 — 8,5
and || Q| < 1/2.

0 M=(I+Q)'=3= 0(—1)” Q" is analytic and the series is
norm convergent. There exists c¢,, ¢3, ¢’ such that || M|} < c,,

|M(x,2)| = o]’ z|(4d =Dl = 1+4lxl,

for |x,| Z 1; for x = (0,%), |M(x,2)| = cs|¢' Z|*™=. M(p,z) is jointly ana-
lytic in z and p, in [Im p,| < —(4d — 3)In|c’z|.

(d) For |z| >0, T= MP~" and is analytic. There exist c,,c,,cs,c’
such that

Ir('xﬂz)l = C"'ICSZ,Md—:;)ny[—(4d+1)-+-4|xlao

for [x,| = 1; for x = (0,%), |T(x,2)| = ¢;|¢’ z|4|"|°°‘4d

(¢) For|z] >0, T(p,z) = M(p, z)G(0,z) ! is jointly analytic in z and
piin [Im p,| < (4d - 3)n|csz].

(f) For z#0, f‘(p,z)é(p,z) =1 in the analyticity region of é(p,z).
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(g) For z>0, p,=iw(p) satisfies I“(p1 iw(p), p,z) =0 and is the
only zero of I'(p,z) in 0 < Im p, < —(4d — 3)In|cszl, [Re py| < 7, is simple
and (3T /3p))(p, = iw(p), p,2) = Z'(p) > 0.

Remark. The bound on Q(x,z) of (b) is obtained by including the x
decay from Theorem Al.1 of Appendix I in the arguments of Section 3 of
Ref. 2. The crucial bound on M(x,z) of (c¢) follows by including x decay
and combining Eq. (3.7) and Theorem 3.4. of Ref. 2.

The proofs of Theorems 1 and 2 are based on the implicit equation for
m(z) of Lemma 2g as the zero of . However, T and T' are not analytic at
z=0but TP = M and M are and as |P(0,z)| Z |z|** by Lemma 2a the zero
at p = (im(z), 0) of ]\/Z(p,z) = P(O,z)f(p,z) is the zero of f(p,z). Thus we
look for the zero of M. By Lemma 2b, ¢ we are led to write the z =0 Taylor
expansion for M(p,z) with the terms up to and including order z4¢~ 1
explicit. The explicit terms of M( p-z) are obtained from the z = 0 Taylor
series of G( P:2),G(0,z) (see Lemma 3 below) and the relation M( p.z)
= F(p,z)G(O z)= G(p,z) 'G(0, z) using Lemma 2e,f. Let

M,(x,z)= M(x,z) — Z 5'1 8’"M( z=0)

Mx(pl,p=0,z)EMs(p1,z) and for n=0,1,...
M(n,z) = ZM(x1 n, Xx,z)

Lemma 3. For |Im p | < —4(d — Dln|cz| G(p,z) has the z = 0 Tay-
lor expansion

G(p,z) =4z% + 8dz% 4+ 4284 71 + ey

d
+ 82874 cos p+ O(2%7?)
i=2

the x series of G~( p,z) converges absolutely.

Proof. By a consideration of Pierels contours in the expansion of
Ref. 2 the only x that contribute to G(p,z) up to order 2/ are x = 0 and
x, |x| = 1. The z =0 expansions of G(x =0, z) and G(x,z), |x| =1, are -
carried out using the duplicate variable representation as in Ref. 2, the first
two terms coming from G(0,z). W
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Lemma 4. (a) |M,(x,z)| = cylez[* 7
(b) M(p,z) is jointly analytic in z and pi in |Imp | < —(@4d—3)
Injcz| and has the z = 0 Taylor expansion

d
M(p,z)=1-z%¥"%e P 4 o) — 2744 2 cos p+ M,(p,z)

the x series of M and M converge absolutely and there exists cg4 such that
|M,(p,2)| = ¢l 2* >,
(c) M,(n,2)/ Sd=n g analytic, the x series converges absolutely, and

there exists ¢, such that |M,(n,2)| = cj|c’z|*" ¥, n#0; |M,(n=0, z)|
<Clzl4d 3

Proof. The proof of (a) follows by a Cauchy estimate on (3%~%/
3E* M (x,¢ = z1) using Lemma 2c. For (b) the analyticity follows using
the bounds of Lemma 2c and the explicit terms are obtained from M( 2,2)
= 1Y 2,2)G(0,2) = G( P:2)”'G(0, z). The proof of (c) follows using (a) and
noting that M(x,z) = M(x,z) for x such that (4d — 3)|x,| — 1 + 4|x],,
z4d-3. N
We now give the proofs of the theorems. For the proof of Theorem 1b
we refer to Ref. 1.

Proof of Theorem 1a. M(p,,z) can be written
M(p;,z)=1-2z%"%d - 1) — z4 %P + 1)
+M(n=0,2)+ > M(nz)(e P"+ eP")
n=1

Introduce the auxiliary complex variable w and function H(w,z) such that
H(w=z*"% " — 1, z) = M(p,,z) where

-8
H(w,2)=w=1—— =2:"%d — 1) + M(n=0,2)
o0 (1+w)" ,r(4d—4)
+ M (n,z + =
20| st (e

Using the estimates of Lemma 4c¢ and the ratio test we find that H(w,z) is
jointly analytic in w and z for |w|,|z| small, H(0,0) = 0 and (3H/9w)(0,0)
= 1. Thus by the analytic implicit function theorem there exists a unique
analytic function w(z), w(0) = 0, such that H(w(z),z) = 0. For z > 0 w(z)
= z*"4%™D — | or m(z) = —(4d — Hlnz + r(z) with r(z) = In(1 + w(2)).

|

Proof of Theoremn 2. The argument is as in Ref. 1 so we only give a
skeich here. The z = 0 Taylor series coefficients of r(z) are determined
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from those of w(z) which depend on those of M. The z =0 Taylor
coefficients of M(x,z) are determined from a finite number of those of
Q=P (G- P) for a finite number of points x of Q(x,z). Here we
have used the falloff of M and Q given by Lemma 2b,c. As Q(x,z)=
G(0,2)"[G(x,2) — G(0,2)], x # 0, the z = 0 Taylor series coefficients are
determined from those of G(0,z) and G(x, 2).
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