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We show that the inverse correlation length re(z) of the truncated spin-spin 
correlation function of the Z a Ising model with + or - boundary conditions 
admits the representation re(z)= - ( 4 d - 4 ) l n z ( 1 -  aai)+ r(z) for small z-- 
e -B, i.e., large inverse temperatures fl > 0. r(z)= ~,n~__lbnz n is a d-dependent 
analytic function at z = 0, already known in closed form for d = 1 and 2; for 
d _-> 3 b n can be computed explicitly from a finite number of the Z d limits of 
z = 0 Taylor series coefficients of the finite lattice correlation function at a finite 
number of points of Z a. 
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In  this short note analyt ic  properties and  a convergent  expansion are 
ob ta ined  for the inverse correlat ion length of the t runcated  sp i n - sp i n  

correlat ion funct ion  (cf) of the neares t -neighbor  spin __ 1 Z d Ising model  

with _+ b o u n d a r y  condi t ions  for large inverse temperature  ft. O u r  results 

are analogous to those ob ta ined  in Ref. 1 for the high-temperature  Ising 
model  and  follow easily upon  combin ing  the techniques of Ref. 1 and  the 
results of Ref. 2. For  d - -  1 and  2 our results are well know n  from explicit 

formulas (see Ref. 3) and  so will not  be discussed further. 

We denote  by Ga(x;  y , z ) =  ( S x S y ) a -  (sx)A(Sy)a ,  x , y  E A the trun- 
cated sp in - sp in  cf for the finite lattice A C Z d with _ b o u n d a r y  condit ions 
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and complex activity z where for F(s) =-- IIiEASi, A C A, we define 

1 - s,~) (F}A = ~ •F(s)  I-I z(l 
{s} ( i , j )  c A  

(i,  j )  denote the unordered nearest neighbor pairs of A and the sum is over 
all spin configurations [ -  1, 1] A with the restriction that the boundary spins 
are + 1. Z A is a normalization factor such that (1)A = 1. z = e -/~, /3 > 0, 
corresponds to the physical model. A similar definition holds for - 
boundary conditions but for definiteness we consider plus conditions 
throughout. 

We let G(x; y,z) denote the Z a lattice cf defined by 

G(x; y,z) = lira Ga(x; y,z) 
A,~Z d 

By Ref. 2 G(x; y,z) exists, is translation invariant and analytic in z for lz[ 
small. By translation invariance we can write G(x; y, z)=-- G(x - y , z ) .  We 
let x = (x 1, z " ,  xa) = (x l ,x )  denote points of Z a, Ix I = ~,a=llxi[ = [xl] + 
Ix I, and let G(p, z) = Y, xeipxG(x, z) denote the Fourier transform of G(x, z) 
where P = ( P l , P ) ,  Pi E ( - r r ,  rr] and px =~ai=lpix i. In Ref. 2 a lattice 
quantum field theory is associated with the Ising model correlation func- 
tions and, for d => 3, z > 0 and small, it is shown that there is an isolated 
dispersion curve o~(p), real analytic in p ~ ( -  rr, ~r] d- 1, co(p) __> co(0) ~ m(z) 
where m(z), the inverse correlation length (=  mass of the fundamental 
particle of the associated quantum field theory), is defined by 

m(z)= lim - l l n G ( x = ( x  L,0),z)  
x i --> c~ X 1 

co(p) is defined by 

co(P)= x~lim -lln[~xeip'XG(x,Z)]xl 

Furthermore the mass and dispersion curve satisfy l imz~o[m(z)/-(4d- 
4) lnz ]=  1, limz~0[co(p)/m]= 1, uniformly in p E ( - T r ,  qr] ~-t. In Ref. 5 
expansions for re(z) are obtained. 

We state our results as Theorems 1 and 2. 

T h e o r e m  1. (a) There exists a function r(z), analytic at z = 0, 
r(0) = 0, such that for all z = e -/~ > 0 and small re(z) admits the represen- 
tation m(z)= - ( 4 d -  4)lnz + r(z). 

(b) There exists a z' > 0 such that for each z ~ (O,z') re(z) is analytic. 

Remark. z' may be larger than the radius of convergence of the 
z = 0 Taylor series of r(z). 

Theorem 2. b, ~ (1/n!)(dnr/dz n) (z = 0), the nth Taylor series coef- 
ficient of r(z) can be computed from a finite number of the Z a limits of the 
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z = 0 Taylor series coefficients of the finite lattice cf GA(0; x, z) for a finite 
number of x, ]x[ < R(n), where R(n) increases with n. 

Similar results hold for the dispersion curve ~o(p). The proofs of 
Theorems 1 and 2 will be given after some preliminary lemmas. 

The results of Ref. 2 as well as ours follow from z analyticity and 
x-decay properties of G(x,z) and F(x,z), where F ( x , z ) =  F(y; u,z), x = 
y - u ,  is the convolution inverse of G(x;y , z )  interpreted as a matrix 
operator on 12(Za), i.e., F(x; y,z)  = G- l (x ;  y,z),  ~ F ( x ;  u,z)G(u; y ,z)  
= 6xy. Specifically F(x,z) has faster x 1 falloff than G(x,z). We state the 
results of Ref. 2 in the form needed here as Lemmas 1 and 2. We often 
drop the z argument for notational simplicity. We let I1 I[ denote the 12(Z a) 
operator norm and Ix[ ~ =-- sup2__< ,.~ dl Xi[. In what follows all results are to be 
understood as holding for d _-> 3 and all sufficiently small ]z I unless stated 
otherwise; c, e', c, . . . .  will denote strictly positive constants. 

L e m m a  1. (a) There exist c, cl,c 2 such that G(x,z) is analytic in z, 

)1 <C,I  14(d-' lx'l+41xJ +4  X~ Z ~ C z 

[[GI[ < c2, and G(xl ,x , z  ) = G ( -  x, ,x ,z) .  
(b) G(p,z) is jointly analytic in z and p~, ]Imp,[ < - 4 ( d -  1)ln[cz I. 

L e m r n a  2. (a) Let P : 12(Zd)---> 12(Z a) be the operator with matrix 
elements P(x; y ,z )  = G(x,z)6xy, then P is analytic, ]P(x,z)] >= [z[ 4~ and for 
[z[ > 0 P -1 exists, is analytic and [[P[[ _-< [z[ -4d. 

(b) Let Q = P - 1(G - P)  then there exist c, c, such that Q is analytic, 

I Q(x,z)l <= c,lczl4(d-OTx'l+4jxl~(1 - 6xO) 

and [[ Q][ < 1/2. 
(c) M--= ( I +  Q ) - ' =  ~n~__0( - 1) n Qn is analytic and the series is 

norm convergent. There exists c2,c3,c' such that [[M[[ < c 2, 

IM (x,z)l <- c3lc' zl(4d- 3)lXll- ' +4Ix]~176 

for Ix,[ ~ l; for x = (0, x), ]M(x,z)] <= c31c'Z] 41xl~. f ' l(p,z)  is jointly ana- 
lytic in z andp ,  in [Imp,] < - ( 4 d -  3)ln[c'z[. 

(d) For [z] > 0, F = M P - '  and is analytic. There exist c3,c4,c5,c' 
such that 

IV(x, z)l --< c4[cszl (4d- -(4d+ 1) +41x]~ 

for Ix,[ => 1; for x = (O,x), Ir(x,~)l = c3[c'z[ 41xl~-4a. 
(e) For Izl > 0, = 37I(p,z)G(O,z)-' is jointly analytic in z and 

p, in IImp,I < ( 4 d -  3)lnlcsz I. 
(f) For z v a O, I ' (p,z)G(p,z)  = I in the analyticity region of G(p,z). 
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(g) For  z > 0, Pl = i~0(p) satisfies F(_Pl = i~0(p), p, z) = 0 and is the 
only zero of F(p,z) in 0 < Imp1  < - ( 4 d -  3)ln[csz I, [Repl  [ < qr, is simple 
and Os = i~0(p), p,z)  = Z ' (p)  > 0. 

Remark. The bound  on Q(x,z) of (b) is obtained by including the x 
decay from Theorem AI.1 of Appendix I in the arguments of Section 3 of 
Ref. 2. The  crucial bound  on M(x, z) of (e) follows by including x decay 
and combining Eq. (3.7) and Theorem 3.4. of Ref. 2. 

The  proofs of Theorems 1 and 2 are based on the implicit equat ion for 
m(z) of Lemm a  2g as the zero of I ~. However,  F and I ~ are not  analytic at 
z = 0 but  F P  = M and M are and as [P(0,z)l  = [z[ 4d by Lemma 2a the zero 
at p = (ira(z), 0) o f /~ t (p ,  z) = e (0 ,  z)F(p,  z) is the zero of l~(p, z). Thus  we 
look for the zero of M. By L e m m a  2b, c we are led to write the z = 0 Taylor  
expansion for 571(p,z) with the terms up to and including order  z 4(d-1) 
explicit. The  explicit terms of 37I(p, z) are obtained from the z = 0 Taylor  
series of Cr(p,z),G(O,z) (see Lemma  3 below) and the relation ~4(p,z) 
= F(p,z)G(O,z) = G(p,z)-IG(O,z) using Lemma  2e, f. Let  

4 d - 4  
Z m ~m M (X, Z = O) Ms(x,z ) =-- M ( x , z ) -  ~, m! 3z" 

m = O  

__  Z 4 d - 3  

( 4 - 2 - - 4 ) !  

# t s ( p ,  , p = o,  z )  - 

= 

1 (1_  ~.4d-4 0 4d-3 
l) ~ ' ~ 3  M(x; ~ = zt)dt 

s162 z) and for n = O, 1 . . . .  

M,(x,  = x,z) 
x 

Lemma 3. For  IImpl[  < - 4 ( d  - 1,)lnlcz I G(p,z) has the z = 0 Tay-  
lor expansion 

G ( t ) , z )  = 4 z  4d 4- 8 d z  8d -4  -4- 4 z S d - 4 ( e  -ip' -4- e ip') 

d 
+ 8z sd-4 cos p i+  O(zS. 

i=2  

the x series of G(p,  z) converges absolutely, 

Proof. By a consideration of Pierels contours in the expansion of 
Ref. 2 the only x that contr ibute to G(p,z) up to order z 8a-4 are x = 0 and 
x, Ix[ = 1. The z = 0 expansions of G(x = 0, z) and G(x,z), Ix[ = 1, are 
carried out using the duplicate variable representat ion as in Ref. 2, the first 
two terms coming from G(0, z). �9 
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Lemma 4. (a) [M~(x,z)] <= c21cz[ 4d-3. 
(b) 371(p,z) is jointly analytic in z and Pl in Ilmp~[ < - ( 4 d - 3 )  

ln]cz] and has the z 0 Taylor expansion 

d 
M(p,z )  = 1 - z4d-4(e -ipl -[- e ipl) --2z4d-4 E COS/0i+ ms(/o,z) 

i = 2  

the x series of h,I and Ms converge absolutely and there exists c 6 such that 
[JOs(/O,Z)I ~ C6[Z[ 4a-3, 

(C) Ms(rl, Z)/z (4d-4)n is analytic, the x series converges absolutely, and 
there exists c7 such that  IMs(n,z)l <=c71c'zi(4~-3)~, n :/=0; ]MAn=O, z)l 

C[Z[ 4d-3. 

Proof. The proof of (a) follows by a Cauchy estimate on (04a-3/ 
~4a-3)M(x,~ = Zt) using Lemma 2c. For  (b) the analyticity follows using 
the bounds of Lemma 2c and the explicit terms are obtained from 34(/O, z) 
= F(/O,z)G(O,z)= G(p,z)-lG(O,z). The proof of (c) follows using (a) and 
noting that M(x , z )=  Ms(x,z ) for x such that ( 4 d - 3 ) l x , I -  1 +4[xl~  
= > 4 d -  3. �9 

We now give the proofs of the theorems. For the proof of Theorem lb 
we refer to Ref. 1. 

Proof of Theorem la. 3~(/o],z) can be written 

M(Pt  ,z) = 1 - 2 z 4 d - 4 ( d -  1) - z4a-4(e -ip' + e ip~) 

+ Ms(n=O,z)  + M s ( n , z ) ( e - i p l n . - l -  e ipln ) 
n=l 

Introduce the auxiliary complex variable w and function H(w, Z) such that 
H(w = znd-4e-ie' - 1, z) = 2~r(/ol,z ) where 

z8d-8 2z4d-4(d- 1) + M,(n = O, z) g (w , z )  = w 1 + w 

+ ~ M s ( n , z ) [ (  l+w)"  Z n(4d-4i ) 
n=i gn(4d_4~ 4" 

Using the estimates of Lemma 4c and the ratio test we find that H(w,z) is 
jointly analytic in w and z for [w], [z[ small, H(0,0)  = 0 and (OH/~w)(O,O) 
= 1. Thus by the analytic implicit function theorem there exists a unique 
analytic function w(z), w(0) = 0, such that H(w(z), z) = 0. For z > 0 w(z) 
= z4~-4em(Z) - 1 or m(z) = - ( 4 d  - 4)lnz + r(z) with r(z) = ln(1 + w(z)). 

Proof of Theorem 2. The argument is as in Ref. 1 so we only give a 
sketch here. The z = 0 Taylor series coefficients of r(z) are determined 
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from those of w(z) which depend on those of M. The z = 0  Taylor 
coefficients of M(x,z) are determined from a finite number  of those of 
Q = P - 1 ( G - P )  for a finite number  of points x of Q(x,z). Here we 
have used the falloff of M and Q given by Lemma 2b, c. As Q(x,z)= 
G(O,z)-l[G(x,z)- G(0,z)], x 4=0, the z = 0 Taylor series coefficients are 
determined from those of G(0,z) and G(x,z). 
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