Analyticity Properties and a Convergent Expansion for the Inverse Correlation Length of the Low-Temperature d-Dimensional Ising Model

Michael O'Carroll ${ }^{1}$ and Wilson Dantas Barbosa ${ }^{2}$

Received August 28, 1983

Abstract

We show that the inverse correlation length $m(z)$ of the truncated spin-spin correlation function of the Z^{d} Ising model with + or - boundary conditions admits the representation $m(z)=-(4 d-4) \ln z\left(1-\delta_{d 1}\right)+r(z)$ for small $z=$ $e^{-\beta}$, i.e., large inverse temperatures $\beta>0 . r(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ is a d-dependent analytic function at $z=0$, already known in closed form for $d=1$ and 2 ; for $d \geqq 3 b_{n}$ can be computed explicitly from a finite number of the Z^{d} limits of $z=0$ Taylor series coefficients of the finite lattice correlation function at a finite number of points of Z^{d}.

KEY WORDS: Ising model; correlation length; correlation length expansion; low-temperature Ising model; correlation function.

In this short note analytic properties and a convergent expansion are obtained for the inverse correlation length of the truncated spin-spin correlation function (cf) of the nearest-neighbor spin $\pm 1 Z^{d}$ Ising model with \pm boundary conditions for large inverse temperature β. Our results are analogous to those obtained in Ref. 1 for the high-temperature Ising model and follow easily upon combining the techniques of Ref. 1 and the results of Ref. 2. For $d=1$ and 2 our results are well known from explicit formulas (see Ref. 3) and so will not be discussed further.

We denote by $G_{\Lambda}(x ; y, z)=\left\langle s_{x} s_{y}\right\rangle_{\Lambda}-\left\langle s_{x}\right\rangle_{\Lambda}\left\langle s_{y}\right\rangle_{\Lambda}, x, y \in \Lambda$ the truncated spin-spin of for the finite lattice $\Lambda \subset Z^{d}$ with \pm boundary conditions

[^0]and complex activity z where for $F(s) \equiv \prod_{i \in A} s_{i}, A \subset \Lambda$, we define
$$
\langle F\rangle_{\Lambda}=\frac{1}{Z_{\Lambda}} \sum_{\langle s\}} F(s) \prod_{\langle, j\rangle \subset \Lambda} z^{\left(1-s_{, j, j}\right)}
$$
$\langle i, j\rangle$ denote the unordered nearest neighbor pairs of Λ and the sum is over all spin configurations $[-1,1]^{\Lambda}$ with the restriction that the boundary spins are $+1 . Z_{\Lambda}$ is a normalization factor such that $\left.\langle 1\rangle_{\Lambda}=1 . z=e^{-\beta}, \beta\right\rangle 0$, corresponds to the physical model. A similar definition holds for boundary conditions but for definiteness we consider plus conditions throughout.

We let $G(x ; y, z)$ denote the Z^{d} lattice of defined by

$$
G(x ; y, z)=\lim _{\Delta \uparrow Z^{d}} G_{\Lambda}(x ; y, z)
$$

By Ref. $2 G(x ; y, z)$ exists, is translation invariant and analytic in z for $|z|$ small. By translation invariance we can write $G(x ; y, z) \equiv G(x-y, z)$. We let $x=\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}, \mathbf{x}\right)$ denote points of $Z^{d},|x|=\sum_{i=1}^{d}\left|x_{i}\right|=\left|x_{1}\right|+$ $|\mathbf{x}|$, and let $\tilde{G}(p, z)=\sum_{x} e^{i p x} G(x, z)$ denote the Fourier transform of $G(x, z)$ where $p=\left(p_{1}, \mathbf{p}\right), p_{i} \in(-\pi, \pi]$ and $p x=\sum_{i=1}^{d} p_{i} x_{i}$. In Ref. 2 a lattice quantum field theory is associated with the Ising model correlation functions and, for $d \geqq 3, z>0$ and small, it is shown that there is an isolated dispersion curve $\omega(\mathbf{p})$, real analytic in $\mathbf{p} \in(-\pi, \pi]^{d-1}, \omega(\mathbf{p}) \geqq \omega(\mathbf{0}) \equiv m(z)$ where $m(z)$, the inverse correlation length ($=$ mass of the fundamental particle of the associated quantum field theory), is defined by

$$
m(z)=\lim _{x_{1} \rightarrow \infty} \frac{-1}{x_{1}} \ln G\left(x=\left(x_{1}, \mathbf{0}\right), z\right)
$$

$\omega(\mathbf{p})$ is defined by

$$
\omega(\mathbf{p})=\lim _{x_{1} \rightarrow \infty} \frac{-1}{x_{1}} \ln \left[\sum_{\mathrm{x}} e^{i \mathbf{p} \cdot \mathrm{x}} G(x, z)\right]
$$

Furthermore the mass and dispersion curve satisfy $\lim _{z \downarrow 0}[m(z) /-(4 d-$ 4) $\ln z]=1, \lim _{z \downarrow 0}[\omega(\mathbf{p}) / m]=1$, uniformly in $\mathbf{p} \in(-\pi, \pi]^{d-1}$. In Ref. 5 expansions for $m(z)$ are obtained.

We state our results as Theorems 1 and 2.
Theorem 1. (a) There exists a function $r(z)$, analytic at $z=0$, $r(0)=0$, such that for all $z=e^{-\beta}>0$ and small $m(z)$ admits the representation $m(z)=-(4 d-4) \ln z+r(z)$.
(b) There exists a $z^{\prime}>0$ such that for each $z \in\left(0, z^{\prime}\right) m(z)$ is analytic.

Remark. $\quad z^{\prime}$ may be larger than the radius of convergence of the $z=0$ Taylor series of $r(z)$.

Theorem 2. $\quad b_{n} \equiv(1 / n!)\left(d^{n} r / d z^{n}\right)(z=0)$, the nth Taylor series coefficient of $r(z)$ can be computed from a finite number of the Z^{d} limits of the
$z=0$ Taylor series coefficients of the finite lattice cf $G_{\Lambda}(0 ; x, z)$ for a finite number of $x,|x|<R(n)$, where $R(n)$ increases with n.

Similar results hold for the dispersion curve $\omega(\mathbf{p})$. The proofs of Theorems 1 and 2 will be given after some preliminary lemmas.

The results of Ref. 2 as well as ours follow from z analyticity and x-decay properties of $G(x, z)$ and $\Gamma(x, z)$, where $\Gamma(x, z)=\Gamma(y ; u, z), x=$ $y-u$, is the convolution inverse of $G(x ; y, z)$ interpreted as a matrix operator on $1_{2}\left(Z^{d}\right)$, i.e., $\Gamma(x ; y, z)=G^{-1}(x ; y, z), \sum_{u} \Gamma(x ; u, z) G(u ; y, z)$ $=\delta_{x y}$. Specifically $\Gamma(x, z)$ has faster x_{1} falloff than $G(x, z)$. We state the results of Ref. 2 in the form needed here as Lemmas 1 and 2. We often drop the z argument for notational simplicity. We let $\left\|\|\right.$ denote the $l_{2}\left(Z^{d}\right)$ operator norm and $|\mathbf{x}|_{\infty} \equiv \sup _{2 \leqq i \leqq d}\left|x_{i}\right|$. In what follows all results are to be understood as holding for $d \geqq 3$ and all sufficiently small $|z|$ unless stated otherwise; $c, c^{\prime}, c_{1}, \ldots$ will denote strictly positive constants.

Lemma 1. (a) There exist c, c_{1}, c_{2} such that $G(x, z)$ is analytic in z,

$$
|G(x, z)| \leqq c_{1}\left|c_{z}\right|^{4(d-1)\left|x_{1}\right|+4|\mathbf{x}|_{\infty}+4 d}
$$

$\|G\|<c_{2}$, and $G\left(x_{1}, \mathbf{x}, z\right)=G\left(-x_{1}, \mathbf{x}, z\right)$.
(b) $\tilde{G}(p, z)$ is jointly analytic in z and $p_{1},\left|\operatorname{Im} p_{1}\right|<-4(d-1) \ln |c z|$.

Lemma 2. (a) Let $P: l_{2}\left(Z^{d}\right) \rightarrow l_{2}\left(Z^{d}\right)$ be the operator with matrix elements $P(x ; y, z)=G(x, z) \delta_{x y}$, then P is analytic, $|P(x, z)| \geqq|z|^{4 d}$ and for $|z|>0 P^{-1}$ exists, is analytic and $\|P\| \leqq|z|^{-4 d}$.
(b) Let $Q=P^{-1}(G-P)$ then there exist c, c_{1} such that Q is analytic,

$$
|Q(x, z)| \leqq c_{1}|c z|^{4(d-1)\left|x_{1}\right|+4|\mathbf{x}|_{\infty}}\left(1-\delta_{x 0}\right)
$$

and $\|Q\|<1 / 2$.
(c) $M \equiv(I+Q)^{-1}=\sum_{n=0}^{\infty}(-1)^{n} Q^{n}$ is analytic and the series is norm convergent. There exists c_{2}, c_{3}, c^{\prime} such that $\|M\|<c_{2}$,

$$
|M(x, z)| \leqq c_{3}\left|c^{\prime} z\right|^{(4 d-3)\left|x_{1}\right|-1+4|\mathbf{x}|_{\infty}}
$$

for $\left|x_{1}\right| \geqq 1$; for $x=(0, \mathbf{x}),|M(x, z)| \leqq c_{3}\left|c^{\prime} Z\right|^{4|\mathbf{x}|_{\infty}} . \tilde{M}(p, z)$ is jointly analytic in z and p_{1} in $\left|\operatorname{Im} p_{1}\right|<-(4 d-3) \ln \left|c^{\prime} z\right|$.
(d) For $|z|>0, \Gamma=M P^{-1}$ and is analytic. There exist $c_{3}, c_{4}, c_{5}, c^{\prime}$ such that

$$
|\Gamma(x, z)| \leqq c_{4}\left|c_{5} z\right|^{(4 d-3)\left|x_{1}\right|-(4 d+1)+4|x|_{\infty}}
$$

for $\left|x_{1}\right| \geqq 1$; for $x=(0, \mathbf{x}),|\Gamma(x, z)| \leqq\left. c_{3}\left|c^{\prime} z\right|^{4 \mid \mathbf{x}}\right|_{\infty}-4 d$.
(e) For $|z|>0, \tilde{\Gamma}(p, z)=\tilde{M}(p, z) G(0, z)^{-1}$ is jointly analytic in z and p_{1} in $\left|\operatorname{Im} p_{1}\right|<(4 d-3) \ln \left|c_{5} z\right|$.
(f) For $z \neq 0, \tilde{\Gamma}(p, z) \tilde{G}(p, z)=1$ in the analyticity region of $\tilde{G}(p, z)$.
(g) For $z>0, p_{1}=i \omega(\mathbf{p})$ satisfies $\tilde{\Gamma}\left(p_{1}=i \omega(\mathbf{p}), \mathbf{p}, z\right)=0$ and is the only zero of $\tilde{\Gamma}(p, z)$ in $0<\operatorname{Im} p_{1}<-(4 d-3) \ln \left|c_{5} z\right|,\left|\operatorname{Re} p_{1}\right|<\pi$, is simple and $\left(\partial \tilde{\Gamma} / \partial p_{1}\right)\left(p_{1}=i \omega(\mathbf{p}), \mathbf{p}, z\right)=Z^{\prime}(\mathbf{p})>0$.

Remark. The bound on $Q(x, z)$ of (b) is obtained by including the \mathbf{x} decay from Theorem A1.1 of Appendix I in the arguments of Section 3 of Ref. 2. The crucial bound on $M(x, z)$ of (c) follows by including x decay and combining Eq. (3.7) and Theorem 3.4. of Ref. 2.

The proofs of Theorems 1 and 2 are based on the implicit equation for $m(z)$ of Lemma $2 g$ as the zero of $\tilde{\Gamma}$. However, Γ and $\tilde{\Gamma}$ are not analytic at $z=0$ but $\Gamma P=M$ and \tilde{M} are and as $|P(0, z)| \geqq|z|^{4 d}$ by Lemma 2a the zero at $p=(\operatorname{im}(z), 0)$ of $\tilde{M}(p, z)=P(0, z) \tilde{\Gamma}(p, z)$ is the zero of $\tilde{\Gamma}(p, z)$. Thus we look for the zero of \tilde{M}. By Lemma 2 b , c we are led to write the $z=0$ Taylor expansion for $\tilde{M}(p, z)$ with the terms up to and including order $z^{4(d-1)}$ explicit. The explicit terms of $\tilde{M}(p, z)$ are obtained from the $z=0$ Taylor series of $\tilde{G}(p, z), G(0, z)$ (see Lemma 3 below) and the relation $\tilde{M}(p, z)$ $=\tilde{\Gamma}(p, z) G(0, z)=\tilde{G}(p, z)^{-1} G(0, z)$ using Lemma 2 e , f. Let

$$
\begin{aligned}
& M_{s}(x, z) \equiv M(x, z)-\sum_{m=0}^{4 d-4} \frac{z^{m}}{m!} \frac{\partial^{m} M}{\partial z^{m}}(x, z=0) \\
& =\frac{z^{4 d-3}}{(4 d-4)!} \int_{0}^{1}(1-t)^{4 d-4} \frac{\partial^{4 d-3}}{\partial \xi^{4 d-3}} M(x, \xi=z t) d t \\
& \tilde{M}_{s}\left(p_{1}, \mathbf{p}=0, z\right) \equiv \tilde{M}_{s}\left(p_{1}, z\right) \quad \text { and for } n=0,1, \ldots \\
& M_{s}(n, z)=\sum_{\mathbf{x}} M_{s}\left(x_{1}=n, \mathbf{x}, z\right)
\end{aligned}
$$

Lemma 3. For $\left|\operatorname{Im} p_{1}\right|<-4(d-1) \ln |c z| \tilde{G}(p, z)$ has the $z=0$ Taylor expansion

$$
\begin{aligned}
\tilde{G}(p, z)= & 4 z^{4 d}+8 d z^{8 d-4}+4 z^{8 d-4}\left(e^{-i p_{1}}+e^{i p_{i}}\right) \\
& +8 z^{8 d-4} \sum_{i=2}^{d} \cos p_{i}+O\left(z^{8 d-3}\right)
\end{aligned}
$$

the x series of $\tilde{G}(p, z)$ converges absolutely.
Proof. By a consideration of Pierels contours in the expansion of Ref. 2 the only x that contribute to $\tilde{G}(p, z)$ up to order $z^{8 d-4}$ are $x=0$ and $x,|x|=1$. The $z=0$ expansions of $G(x=0, z)$ and $G(x, z),|x|=1$, are carried out using the duplicate variable representation as in Ref. 2, the first two terms coming from $G(0, z)$.

Lemma 4. (a) $\left|M_{s}(x, z)\right| \leqq c_{2}|c z|^{4 d-3}$.
(b) $\tilde{M}(p, z)$ is jointly analytic in z and p_{1} in $\left|\operatorname{Im} p_{1}\right|<-(4 d-3)$ $\ln |c z|$ and has the $z=0$ Taylor expansion

$$
\tilde{M}(p, z)=1-z^{4 d-4}\left(e^{-i p_{1}}+e^{i p_{1}}\right)-2 z^{4 d-4} \sum_{i=2}^{d} \cos p_{i}+\tilde{M}_{s}(p, z)
$$

the x series of \tilde{M} and \tilde{M}_{s} converge absolutely and there exists c_{6} such that $\left|\tilde{M}_{s}(p, z)\right| \leqq c_{6}|z|^{4 d-3}$.
(c) $M_{s}(n, z) / z^{(4 d-4) n}$ is analytic, the \mathbf{x} series converges absolutely, and there exists c_{7} such that $\left|M_{s}(n, z)\right| \leqq c_{7}\left|c^{\prime} z\right|^{(4 d-3) n}, n \neq 0 ;\left|M_{s}(n=0, z)\right|$ $\leqq c|z|^{4 d-3}$.

Proof. The proof of (a) follows by a Cauchy estimate on ($\partial^{4 d-3} /$ $\left.\partial \xi^{4 d-3}\right) M(x, \xi=z t)$ using Lemma 2c. For (b) the analyticity follows using the bounds of Lemma 2 c and the explicit terms are obtained from $\tilde{M}(p, z)$ $=\tilde{\Gamma}(p, z) G(0, z)=\tilde{G}(p ; z)^{-1} G(0, z)$. The proof of (c) follows using (a) and noting that $M(x, z)=M_{s}(x, z)$ for x such that $(4 d-3)\left|x_{1}\right|-1+4|\mathbf{x}|_{\infty}$ $\geqq 4 d-3$.

We now give the proofs of the theorems. For the proof of Theorem $1 b$ we refer to Ref. 1.

Proof of Theorem 1a. $\tilde{M}\left(p_{1}, z\right)$ can be written

$$
\begin{aligned}
\tilde{M}\left(p_{1}, z\right)= & 1-2 z^{4 d-4}(d-1)-z^{4 d-4}\left(e^{-i p_{1}}+e^{i p_{1}}\right) \\
& +M_{s}(n=0, z)+\sum_{n=1}^{\infty} M_{s}(n, z)\left(e^{-i p_{1} n}+e^{i p_{1} n}\right)
\end{aligned}
$$

Introduce the auxiliary complex variable w and function $H(w, z)$ such that $H\left(w=z^{4 d-4} e^{-i p_{1}}-1, z\right)=\tilde{M}\left(p_{1}, z\right)$ where

$$
\begin{aligned}
H(w, z)= & w-\frac{z^{8 d-8}}{1+w}-2 z^{4 d-4}(d-1)+M_{s}(n=0, z) \\
& +\sum_{n=1}^{\infty} M_{s}(n, z)\left[\frac{(1+w)^{n}}{z^{n(4 d-4)}}+\frac{z^{n(4 d-4)}}{(1+w)^{n}}\right]
\end{aligned}
$$

Using the estimates of Lemma 4 c and the ratio test we find that $H(w, z)$ is jointly analytic in w and z for $|w|,|z|$ small, $H(0,0)=0$ and $(\partial H / \partial w)(0,0)$ $=1$. Thus by the analytic implicit function theorem there exists a unique analytic function $w(z), w(0)=0$, such that $H(w(z), z)=0$. For $z>0 w(z)$ $=z^{4 d-4} e^{m(z)}-1$ or $m(z)=-(4 d-4) \ln z+r(z)$ with $r(z)=\ln (1+w(z))$.

Proof of Theorem 2. The argument is as in Ref. 1 so we only give a sketch here. The $z=0$ Taylor series coefficients of $r(z)$ are determined
from those of $w(z)$ which depend on those of M. The $z=0$ Taylor coefficients of $M(x, z)$ are determined from a finite number of those of $Q=P^{-1}(G-P)$ for a finite number of points x of $Q(x, z)$. Here we have used the falloff of M and Q given by Lemma $2 \mathrm{~b}, \mathrm{c}$. As $Q(x, z)=$ $G(0, z)^{-1}[G(x, z)-G(0, z)], x \neq 0$, the $z=0$ Taylor series coefficients are determined from those of $G(0, z)$ and $G(x, z)$.

REFERENCES

1. M. O'Carroll, Analyticity properties and a convergent expansion for the inverse correlation length of the high temperature d-dimensional Ising model, J. Stat. Phys. 34: 597 (1984).
2. R. Schor, Commun. Math. Phys. 59:213-233 (1978).
3. E. Lieb, D. Mattis, and T. Schultz, Rev. Mod. Phys. 36:856 (1964).
4. M. Fisher and H. Tarko, Phys. Rev. B 11:1217 (1975).

[^0]: ${ }^{1}$ Departamento de Física-ICEx, Universidade Federal de Minas Gerais, C.P. 702, 30.000, Belo Horizonte, MG, Brazil.
 ${ }^{2}$ Departamento de Matemática--ICEx, Universidade Federal de Minas Gerais, C.P. 702, 30.000, Belo Horizonte, MG, Brazil.

